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Abstract 
Project selection has traditionally been a difficult decision making problem especially for large 
organizations with many stakeholders. The basic problem is to reach an agreement among the different 
stakeholders to allocate limited resources to fund multi-year capital projects in some optimal fashion. 
Considering that there is uncertainty about the final cost of each project, the organization must try to 
prevent exceeding the budget when making the decision. The authors present a framework using the 
Analytic Hierarchy Process (AHP) to reach an agreement between stakeholders about the relative 
importance of funding the different projects available during the upcoming years. A multi-year knapsack 
optimization problem is solved using an equivalent non-linear deterministic constraint in lieu of the 
probabilistic constraint required to maintain a given confidence level of not exceeding each year’s 
available budget. The framework is explained and presented with an example drawn from an agency 
whose main forte is managing more than 80 facilities worldwide and allocating billions of dollars to 
operate, maintain, replace or upgrade these facilities over the years.   
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1. INTRODUCTION 
 
Some large organizations have a competing set of projects to undertake, but because the yearly available 
budget is limited, only a subset of the available projects can be undertaken at a given time. The projects 
may vary in size from a few thousand dollars to hundreds of millions of dollars, and in duration from one 
to several years. Because the cost of the projects will increase due to inflation, some projects might 
become too expensive to be selected in later years.  Therefore, the decision makers, who allocate the 
funds, have the task of analyzing the different aspects of each project before making a decision. They 
should identify their priorities, and give each project a weight according to each project’s aspects and the 
potential time of execution. 
 
We present a multiobjective optimization model to account for the benefits, uncertainties and budget 
limitations involved in project selection. The paper first presents a literature review and the underlying 
theory required for the model, followed by a case study that illustrates the procedure, finishing with the 
conclusions. 
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2. LITERATURE REVIEW 
 
The project selection problem under uncertainty has been widely studied since the 1950’s when the 
publication of the paper “Portfolio Selection” by the Nobel Price winner Harry Markowitz provided a 
stepping stone into the subject (Markowitz, 1952). Markowitz proposed an optimization method whose 
objective was to minimize the variance of the portfolio (and therefore the risk) subject to a budget 
constraint and expected minimum returns. By changing the returns expectations one can find a series of 
points that form the so-called “efficient frontier” or Pareto optimal curve. This curve is such that each 
point is optimal in the sense that is not possible to obtain a solution that is better in any of the objectives 
without deteriorating the value of at least another objective (Steuer 1986).  
 
Although Markowitz’s work was aimed at stock market decisions, other authors have quickly expanded to 
a myriad of applications. Some authors have focused on finding the combination of projects that provides 
the lowest total cost for a given probability of success (Kujawski, 2002) while others have applied 
simulation methods to accommodate the dynamics of stock trading (Detemple, et al., 2003).  
 
A number of publications have been made in recent years focusing on evaluating engineering, 
procurement and construction projects based on an established set of objectives. These publications have 
generally considered either multiple objectives without risk considerations, or a single objective with 
some form of risk assessment. Moselhi and Deb (1993) presented a comprehensive methodology for the 
consideration of multi-objectives and risk in the selection construction projects. 
 
Some deterministic approaches have been taken based on the well-known “knapsack problem” (Winston 
2004, and Badiru and Pulat 1995), the budget available to pursue the project portfolio is viewed as a 
knapsack which has a capacity equal to the budget amount, each project is view as taking up space in 
proportion to it’s cost. These approaches include among others the work by Mandakovic et al. (1985) and 
Gori (1996). 
 
The project selection for Resource and Development (R&D) projects has had a fair share of attention. 
Williams (1969) worked evaluation and selection of R&D projects for the British Aircraft Corporation 
where the benefit of the projects was combined as a weighted sum of factor scores. Lockett and Freeman 
(1970) created a framework to account for the stochastic nature of resource requirements and project 
benefits, using a combination of probabilistic networks, simulation and mathematical programming. 
Taylor et al. (1982) extended the traditional integer programming approach to consider other non 
linearities that result from resource allocation. Stewart (1991) developed a decision support system for the 
selection of a portfolio of R&D projects which was carried out for a large electricity utility corporation 
where he treated the problem as a multi-criteria decision problem. The application of this approach did 
require a less usual form of scalarizing function as well as a heuristic algorithm for solving a non-linear 
knapsack problem.  
 
Some applications of multiobjective optimization applied to medical facilities, include the work of  
Argote (1982) who studied the relationships among uncertainty, coordination, organizational 
effectiveness of hospital emergency units. Although this work was not a project selection work per se, it 
was applied to medical facilities. 
 
The use of the analytic hierarchy process to measure the initial viability of industrial projects was 
presented by Alidi (1996) where he emphasized the importance in ranking the projects for the efficient 
allocation of the company's resources. The AHP was also used in risk assessment in construction by 
Mustafa and Al-Bahar (1991) in order to analyze and assess project risks during the bidding stage of a 
construction project and to overcome the limitations of the approaches currently used by contractors. 
Cheng and Li (2001) used AHP to prioritize different forms of information for better resource allocation 
in construction projects. On the other hand, in 2005, they implemented another method, Analytical 
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Network Process (ANP), to deal with interdependent relationships within a multicriteria decision-making 
model where they prioritized a set of projects by using a five-level project selection model. 
 
A Multiobjective optimization approach with stochastic project cost was analyzed by Gabriel et al. (2005, 
2006) using chance constraints to maintain the risk of exceeding the budget within limits. Li and Puyan 
(2006) deals with the stochastic optimization of highway projects under budget uncertainty, they 
formulated a stochastic Knapsack problem with -stage budget recourses.  
 
Our work builds on the deterministic equivalent formulation presented in Gabriel et al. (2006) but 
expands by introducing multiple year consideration with the effect of inflation, and presents the case of an 
agency whose main forte is managing medical facility programming, planning, design, construction, 
maintenance, and sustainment. 
  
 
3. DECISION MAKING CONSIDERATIONS 
 
When a large number of projects are available and one is faced with the task of selecting among them the 
“best” to be funded, many aspects come into consideration. The first one is perhaps the cost, so it is 
necessary that the total cost of the selected projects not exceeds the available budget. From this 
perspective one way of obtaining the best solution is to use the knapsack problem. The problem can be 
stated as: which projects should be included to maximize some objective function of importance to the 
decision maker, subject to the limitations imposed by yearly budget? When dealing with a multi-year 
problem or long term planning, there is a budget allocated for each year and the selection should not 
exceed the budget given for each year.  
 
3.1 Benefits of the Portfolio 
 
One function to measure benefit can be computed as the sum of priorities given to the projects selected in 
the portfolio. The decision maker could assign one priority to each project independently of the year, or a 
different priority depending on the year where the project is selected for funding. The values for the 
priorities used can be found by using the Analytic Hierarchy Process (AHP) (Saaty 1980). This process is 
based on a pairwise comparison of the attributes to determine the relative importance between the projects 
according to the judgment of the decision makers. If the projects are given the same priority regardless of 
the year in which they are chosen, then two solutions that select the same projects, would have the same 
benefit regardless of when the projects are selected. This might not have much practical sense, for 
example selecting all projects in the first year would be considered equally beneficial as selecting all 
projects in the forth year and do nothing the first three years.  
 
For example consider the case of five projects to be funded in a five year window. To give each project a 
different priority, the decision makers can agree in a rank similar as presented in Table 1. The decision 
maker has given to each project a different rank or benefit depending on the year that each project is 
funded. The ranks are decreasing each year to favor earlier selection of the projects. 
 

Table 1 Matrix of ranks for each project per year 
 

 Year 1 Year 2 Year 3 Year 4 Year 5
p1 0.8110 0.7299 0.6569 0.5912 0.5321
p2 0.6183 0.5565 0.5009 0.4508 0.4057
p3 1.5836 1.4252 1.2827 1.1544 1.0390
p4 0.8303 0.7473 0.6725 0.6053 0.5448
p5 0.9101 0.8191 0.7372 0.6635 0.5971
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Some agencies may loose available funds if they are not allocated, so another valid measurement of the 
benefit would be to minimize the slack or difference between the budget and the funds allocated. This 
benefit measurement would give priority to those selections that have minimum total slack. Yet another 
benefit measure could be just the contrary, choose a portfolio that provides maximum slack, the reasoning 
behind such measure is that because the project costs are stochastic, their final cost might be higher than 
predicted. Therefore, having extra slack in the selection can accommodate for any unforeseen events that 
might rise. This measurement is equivalent to the minimum cost, since a portfolio with minimum cost 
would have the maximum slack. Yet another possible measurement is the well-known net present value 
(NPV) which would give preference to a portfolio that has a higher net present value as compared to 
another one. The problem with this measurement is the dependency of the solution on the interest rate 
chosen. A solution that has a lower NPV for a certain interest rate might have a higher one with a 
different interest rate so the selection of the interest rate must be carefully considered. 
 
3.2 Expected Cost of the Portfolio 
 
Considering the cost of each project as a normally distributed variable, then the sum of the costs for all 
projects on each year is also a normally distributed variable. This holds true since the cost of each project 
is a sum of the cost of many deliverables, each one of them being a random variable, then by the Central 
Limit Theorem the total cost for each project will tend to be a normally distributed variable (Garvey 
2000), and the sum of normally distributed variables is another normally distributed variable. 
 
Because any given project might have a duration that exceeds a year, then the cost for each year and the 
probability to exceed such cost needs to be computed. 
By the properties of the mean and variance of a random variable, if X  is a random variable with mean 
μ and variance ν  then for any constant  the mean of  is cc cX μ and the variance of  is cX

2c ν (Winston 2004). We can calculate the expected value and variance of the cost for each project, for 
every year using this knowledge.  If the duration of a project is , and the expected total cost of any 

given project i  is 

id

ic , then for each year the expected cost of project is given by i i

i

c
d

and the variance of 

the cost for the given year is then 2
i

id
ν

. For those projects whose duration is fractional then the last year 

will be subject to a smaller cost and variance as compared to the earlier years. Consider for example a 
project with a duration of 1.5 years, during the first year the cost would be 2/3 of the total cost and the 
variance would be (2/3)2 of the original variance whereas the last year would have (1/3) of the total cost 
and (1/3)2 of the total variance. This assumes that the project’s expenses are uniform over the duration of 
the project.  
 
With this in mind one can create a matrix f filled with factors that can be used to distribute the project’s 
cost over the years. In this matrix f  an entry ,i jf represents the fraction of the cost distributed for project 

 in yeari j . The distributed costs for each project over the years can then be computed using a distributed 
cost matrix formed as follows: 

(1) : distributed cost matrix = dc

(1)
1

(2)
2

( )

...
n

n

c f

c f

c f

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
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where 

ic  is the expected cost of project i , and  
( )if is the  i th row of the matrix of cost distribution factors 

Consider for example the case of five projects with costs and durations as per Table 2
 

Table 2 List of five projects with their durations 
 

Project Projects Cost Duration 
p1 OB Modernization/Surgical Renovation      $15,657,597 1.5 years 
p2 OB Modernization      $15,657,597 1 year 
p3 Hospital Replacement    $126,065,619 3 years 
p4 AHCC Addition/Alteration      $38,820,383 3.5 years 
p5 AHCC Replacement      $64,710,595 2.5 years 

 
A corresponding matrix of distribution factors is shown in Table 3
 

Table 3 Matrix of distribution factors for projects in Table 2
 

Project Year 1 Year 2 Year 3 Year 4 
p1 2/3 1/3 0 0 
p2 1 0 0 0 
p3 1/3 1/3 1/3 0 
p4 2/7 2/7 2/7 1/7 
p5 2/5 2/5 1/5 0 

 
And the distributed cost matrix would be as presented in Table 4. 
 

Table 4 Distributed cost matrix 
 

Project Year 1 Year 2 Year 3 Year 4 
p1 $10,438,398 $5,219,199 $0 $0  
p2 $15,657,597 $0 $0 $0  
p3 $42,021,873 $42,021,873 $42,021,873 $0  
p4 $11,091,538 $11,091,538 $11,091,538 $5,545,769  
p5 $25,884,238 $25,884,238 $12,942,119 $0  

 
If a project is selected to start on a given year, then it is assumed that the project will continue over the 
years until the project is completed and the different years will not be affected by inflation since this 
factor is included in the initial cost. If the first assumption is not true, then the project can be broken down 
in phases where each phase can be treated as a separate project. If the second assumption is not true, then 
the inflation factor can be applied to all the phases of each project rather than to those projects not 
selected for funding on a given year. 
 
The expected cost of the portfolio during year 1 is equal to the sum of the first year for the projects 
selected to be funded during the first year. For year 2, the total expected cost of the portfolio is the cost of 
those projects selected during year one that are still ongoing in the second year, plus the expected cost of 
the projects selected for funding on the second year after adjusting for inflation.  
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These costs can be expressed as: 
 

(2) ( )( 1)
, 1 ,

1 1

1 inf ; {1, 2,.. }
j n

k
j i j k i k

k i

EC dc x j−
− +

= =

= + ∀ =∑ ∑ y  

 
where 

jEC is the expected cost of the portfolio for year j 
n is the number of projects to consider, 
y is the number of years in consideration, 
inf is the inflation rate per year, 

,i jdc is the distributed cost for project  during year i j , 

,i jx is the decision variable associated to fund project i  during year j  
 
Equation (2) can be expressed in matrix vector form by constructing an expanded distribution cost matrix 

as follows. Starting with the  matrix we compute ( ) for every year and place it 

below the  matrix offset by one column obtaining an extended distributed cost matrix as follows: 

edc dc ( 1)1 inf j dc−+

dc
 
 

(3) 

( ) ( )

( )

1,1 1,

,1 ,

1,1 1,

,1 ,

1 1
1,1 1,

1
,1

... 0 0 0
... ... ... 0 0 0

... 0 0 0
0 (1 inf) ... (1 inf) 0 0
0 ... ... ... 0 0
0 (1 inf) ... (1 inf) 0 0
0 0 ... ... ... 0

0 0 0 (1 inf) ... (1 inf)
0 0 0 ... ... ...

0 0 0 (1 inf) ..

y

n n y

y

n n y

y y
y

y
n

dc dc

dc dc
dc dc

edc dc dc

dc dc
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− −

−

+ +
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+ +

+ ( )1
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n ydc−

⎡ ⎤
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⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥+⎣ ⎦

 

 
This extended distributed cost matrix allows rewriting (2) in a more succinct vector matrix form as: 
 

(4) [ ]TEC edc x⎡ ⎤= ⎣ ⎦  

 
where  
EC is a column vector with the cost of the portfolio for each year 
[ ]x  is a column vector containing the selection of each project for each year, [ ]x  is formed taking the 

decision variables ,i jx and placing each column j below the previous one forming one column vector as 
follows: 
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x
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In the case of our 5 project example, the matrix  can be written as presented in EC Table 5. 
 

Table 5 Extended distribution cost matrix for the projects presented in Table 2. 
 

 Year 1 Year 2 Year 3 Year 4 Year 5 
1 $10,438,398 $5,219,199 $0 $0 $0 
2 $15,657,598 $0 $0 $0 $0 
3 $42,021,873 $42,021,873 $42,021,873 $0 $0 
4 $11,091,539 $11,091,539 $11,091,539 $5,545,769 $0 
5 $25,884,239 $25,884,239 $12,942,120 $0 $0 
6 $0 $10,960,318 $5,480,159 $0 $0 
7 $0 $16,440,477 $0 $0 $0 
8 $0 $44,122,967 $44,122,967 $44,122,967 $0 
9 $0 $11,646,116 $11,646,116 $11,646,116 $5,823,058 

10 $0 $27,178,451 $27,178,451 $13,589,226 $0 
11 $0 $0 $11,508,334 $5,754,167 $0 
12 $0 $0 $17,262,501 $0 $0 
13 $0 $0 $46,329,115 $46,329,115 $46,329,115 
14 $0 $0 $12,228,422 $12,228,422 $12,228,422 
15 $0 $0 $28,537,374 $28,537,374 $14,268,687 
16 $0 $0 $0 $12,083,751 $6,041,875 
17 $0 $0 $0 $18,125,626 $0 
18 $0 $0 $0 $48,645,571 $48,645,571 
19 $0 $0 $0 $12,839,843 $12,839,843 
20 $0 $0 $0 $29,964,242 $29,964,242 
21 $0 $0 $0 $0 $12,687,938 
22 $0 $0 $0 $0 $19,031,908 
23 $0 $0 $0 $0 $51,077,849 
24 $0 $0 $0 $0 $13,481,835 
25 $0 $0 $0 $0 $31,462,455 

 
Although the extended cost matrix can be calculated until the 8th year, because the projects can extend up 
to 3.5 years and if selected on the 5th year they will span up to the 8th year, we limited our calculations to 
the first five years. The reason is that the timeframe for the analysis within the agency is limited for five 
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years, there is no budget set up thereafter. New projects come along over time, and the organization will 
include them in their updated plan which would be calculated yearly for the next five years. 
 
 
3.3 Variance of the Portfolio 
 
Similarly to the computation of the distributed cost, the distributed variance for each project over the 
years can be computed using a distributed variance matrix formed as follows: 
 

(6) : distributed variance matrix = dv [ ] 2v f⎡ ⎤⎣ ⎦  

 
where: 
v is the variance-covariance matrix, and 

2f⎡ ⎤⎣ ⎦ is the matrix of distribution factors squared 

 
Consider for example the case of the same five projects presented in Table 2, the variance-covariance 
matrix is presented in Table 5. 
 

Table 6 Variance covariance matrix for five projects 
 

Project p1 p2 p3 p4 p5 
p1 66,970,274,124 0 0 0 0
p2 0 58,087,907,171 0 0 0
p3 0 0 4,341,354,233,402 0 0
p4 0 0 0 411,672,193,471 0
p5 0 0 0 0 1,143,885,864,676
 
The matrix of distribution factors squared is presented in Table 6
 

Table 7 Matrix of distribution factors squared 
 

Project Year 1 Year 2 Year 3 Year 4 
p1 4/9 1/9 0 0 
p2 1 0 0 0 
p3 1/9 1/9 1/9 0 
p4 4/49 4/49 4/49 1/49 
p5 4/25 4/25 1/25 0 

 
And the distributed variance matrix would be as presented in Table 7. 
 

Table 8 Distributed variance-covariance matrix 
 

Project Year 1 Year 2 Year 3 Year 4 
p1 29,764,566,277 7,441,141,569 0 0
p2 58,087,907,171 0 0 0
p3 482,372,692,600 482,372,692,600 482,372,692,600 0
p4 33,605,893,345 33,605,893,345 33,605,893,345 8,401,473,336
p5 183,021,738,348 183,021,738,348 45,755,434,587 0

 108  



 
 
 
For each year, the variance of the portfolio can be calculated given the variance-covariance matrix and the 
selection of projects for that particular year. For the first year, the variance of the portfolio is given by the 
sum of the covariances for the projects selected on year one. When the projects are independent, the 
variance-covariance matrix has entries only in the diagonal such as in Table 5, the calculation of the total 
variance is be the sum of the individual project cost variances for those projects chosen for funding during 
the year. In general, the projects do not need to be independent. For the second year the variance of the 
portfolio is given by the sum of the covariances for the projects selected during the second year, plus the 
sum of the covariances for the ongoing projects selected on the previous year. 
 
For the first year, the variance of the portfolio can be computed as: 
 

(7)  1 , ,1 ,1
1 1

n n

i j i j
j i

V dv x
= =

=∑∑ x

where 
jV is the variance of the portfolio for year j  

,i jdv is the distributed covariance of projects i  and j  

,i jx is the decision variable associated to fund project i  during year j , 
 
For the second year, the variance of the portfolio can be computed as: 
 

(8)  [ ][ ] ( ) [ ]2
2 1 2 1 2 1 21 intT TV x dv x x dv x⎡ ⎤⎡ ⎤ ⎡ ⎤= + +⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 
This equation accounts for the variance of the projects selected during the first year that are still ongoing 
on the second year, plus the variance of the projects selected to start on the second year adjusted by 
inflation. 
 
In general, for any year j  the total variance of the portfolio can be computed as: 
 

(9)  ( ) [ ]2( 1)
1

1

1 int
j

iT
j i j i

i

V x dv−
− +

=

⎡ ⎤⎡ ⎤= +⎣ ⎦ ⎣ ⎦∑ ix

 
Equation (9) can also be written in a vector matrix from by creating an extended distributed variance 
matrix, similarly as done for the evaluation of the cost of the portfolio. The factor multiplying the original 
variance in this case is  for any given year j. An extended distribution variance matrix  

starts from the original dv matrix. Immediately below but offset by one column, we place the matrix 
for each year into consideration. 

( )2( 1)1 int j−+ edv

( )2( 1)1 int j dv−+
 
With this extended distribution matrix, the variance of the portfolio can be computed for each year as: 
 

(10) [ ]T
j jV x edv x⎡ ⎤ ⎡ ⎤= ⎣ ⎦⎣ ⎦  

 
where 

jV is the variance of the portfolio for year j 
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Tx is the transposed vector of the solution  

edv is the extended distributed variance matrix 
jx is the decision variable corresponding to the year j 

 
The extended distributed variance for the five projects presented before is as shown in Table 8. 
 

Table 9 Extended distributed variance 
 

edv 1 2 3 4 5 
1 29,764,566,278 7,441,141,569 0 0 0
2 58,087,907,172 0 0 0 0
3 482,373,000,000 482,373,000,000 482,373,000,000 0 0
4 33,605,893,345 33,605,893,345 33,605,893,345 8,401,473,336 0
5 183,022,000,000 183,022,000,000 45,755,434,587 0 0
6 0 32,815,434,321 8,203,858,580 0 0
7 0 64,041,917,657 0 0 0
8 0 531,816,000,000 531,816,000,000 531,816,000,000 0
9 0 37,050,497,412 37,050,497,412 37,050,497,412 9,262,624,353

10 0 201,781,000,000 201,781,000,000 50,445,366,632 0
11 0 0 36,179,016,339 9,044,754,085 0
12 0 0 70,606,214,217 0 0
13 0 0 586,327,000,000 586,327,000,000 586,327,000,000
14 0 0 40,848,173,397 40,848,173,397 40,848,173,397
15 0 0 222,464,000,000 222,464,000,000 55,616,016,712
16 0 0 0 39,887,365,514 9,971,841,378
17 0 0 0 77,843,351,174 0
18 0 0 0 646,426,000,000 646,426,000,000
19 0 0 0 45,035,111,170 45,035,111,170
20 0 0 0 245,267,000,000 245,267,000,000

 
Similarly as with the extended cost matrix, the extended distributed variance matrix can be calculated 
until the 8th year, but we limited our calculations to the first five years.  
 
3.4 Selection of the Portfolio 
 
The decision of which projects to select can be found by solving an optimization problem. For our case, 
the objectives are two: maximize the value of the priorities and minimize total slack between the portfolio 
selection for the year and the budget. The second objective helps the agency not to loose unallocated 
funds at the end of the fiscal year. 
 

(11) Max: 
1 1

Y n

ij ij
j i

p x
= =
∑∑  

(12) Min: [ ]Tb edc x⎡ ⎤− ⎣ ⎦∑  
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subject to: 
(13) [ ]( )TP edc x b α⎡ ⎤ ≤ ≥⎣ ⎦  

(14) , 1, {1,2,.., }i j
i

x j y≤ ∀ =∑  

(15) {0,1}ijx ∈  
 
where 

ijp  represents the benefit obtained by including project i  in the solution of year j  

ijx  is a binary decision variable to fund ( ,i jx =1), or not to fund ( ,i jx =0) project  during year i j . 
x  is a column vector of  the decision variables  

Tedc is the transposed matrix of the extended distribution cost matrix. 
b is a column vector with the maximum budget available during each year. 
α is a column vector with the desired probability in each entry. 
 
Constraint (13) ensures that the sum of the costs do not exceed the budget for each of the years under 
consideration. Constraint (14) ensures that each project is selected only once. Constraint (15) ensures that 
the project are completely funded or not funded at all. 
 
3.5 Solution of the Problem 
 
The fundamental difficulty encountered when trying to solve this problem is that constraint (13) is a 
probabilistic constraint. However, based on the simple project selection problem the constraint can be 
converted to a non-linear deterministic equivalent constraint (Charnes and Cooper 1959; Vajda 1972). 
Using a similar approach as the one by presented in Gabriel et al. (2006), but expanded for a multiperiod 
problem with inflation we can end with a deterministic equivalent constraint.  
 
The single period portfolio optimization problem and the corresponding transformation of the 
probabilistic constraint to a non linear deterministic equivalent constraint as presented by Gabriel et. al 
2006 can be extended to a multi-period optimization problem with inflation as follows: 
 
For each of the years j  in {1, 2,…,y} we have: 
 

(16) 

[ ]( )
[ ] [ ]( ) [ ]( )

T

T TT

P edc x b

edc x edc x b edc x
P

s s

α

α

⎡ ⎤ ≤ ≥ ⇔⎣ ⎦

⎡ ⎤⎡ ⎤ ⎡ ⎤⎡ ⎤ − −⎣ ⎦ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦≤ ≥⎢ ⎥
⎢ ⎥
⎣ ⎦

 

 
where:  
 

(17) ( ) [ ]( )1/ 21/ 2 T
j js V x edv x⎡ ⎤ ⎡ ⎤= = ⎣ ⎦⎣ ⎦  

 
is the standard deviation of the total cost for the portfolio of projects for year j. Since we consider the cost 
of each project to be normally distributed, then (16) can be written as: 
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where is a normal distribution with mean zero (0) and variance one (1). z
This is by definition the cumulative distribution function, which means 
 

(19) [ ]( )T
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Because this function is strictly increasing and invertible, the following equivalent constraint can be used: 
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The two objectives (11) and (12) can be combined into one objective using a weight factor 0 1w< <  as 
follows: 
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The model then becomes: 
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i
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(24)  {0,1}ijx ∈
 
If the confidence level α  is selected to be greater or equal to 0.5 then constraint (22) is a convex 
quadratic constraint (Bazaraa et al. 1979) that is equivalent to the original probabilistic constraint (Gabriel 
et al. 2006) . The solution to the problem with strictly positive weights provides Pareto optimal points 
(Cohon 1978).  
 
 
4. CASE STUDY 
 
In the agency from which this example was drawn, three or more portfolio alternatives are developed in 
each study based upon the criteria of benefit vs. cost.  There is a great magnitude of outside pressures that 
weigh upon each project (typically upper leadership bureaucracy).  In a committee setting, the committee 
irons out which alternatives will be selected based upon subjective judgments of the criteria and need.  
Once a project alternative is selected by the committee it is placed in a queue for funding. A funding order 
is then selected based upon the budget per year. The process is not orderly and often spills over from 
meeting to meeting and into teleconferences and emails until someone’s will is broken and or “the 
squeaky wheel gets the grease”.  Budget limitations are only one aspect of the problem, there are also 
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benefits associated with each project and different stakeholders who are adamant about having their 
project funded, there are also uncertainties associated with the final costs of each project, inflation also 
factors in for the timing of the selection. Funding for projects is distributed by fiscal year and the funds 
for that year must be allocated or they will revert to another service or be rescinded.  The funds cannot 
spill over into the following year or be used for prior years.  Once the budget is allocated to the projects, it 
is sometimes possible to switch funds from one project to another however; this usually is only possible 
within the same funding year at the end of one of the projects, when the savings are realized. A typical 
occurrence in the process is to have a reserve of small projects called Unspecified Minor Construction 
(UMC) projects that can be used to allocate any excess funding to after the major project selections have 
been made.  These projects range from $1.5 million dollars and below.  They basically have no order of 
precedence and can be inserted into the funding stream as needed. For years, there has been no formal 
way of selecting projects other than the laborious conflict riddled process described above.  The process 
often placed projects in order of funding based on large facility need and not necessarily what was best 
for the program’s portfolio.  This process would please large facility leadership and enrage leadership in 
the smaller facilities due to the bureaucratic pull of the larger facilities.  A more organized process is 
required where the subjective voting on criteria can be done without political influence and a weighted 
decision established that equates to a more mathematically controlled and fair process.  
 
To illustrate the procedure we have chosen a set of five projects with durations, cost and variances as 
presented before. The solution to this problem depends on the weight  used and the confidence level w α  
selected. We have obtained the Pareto optimal points using an exhaustive search, and a confidence level 
of 95%.  The Pareto optimal results are presented below in Table 10. 

 
Table 10 Pareto Optimal Selection of Portfolios 

 
 Year 1 Year 2 Year 3 Year 4 Year 5 Rank Slack 

Portfolio 1 3 4  1,5 2 3.991 $47,086,956 
Portfolio 2 3,4   1,5 2 4.074 $49,027,975 
Portfolio 3 1,5 2 3 4  4.166 $49,524,296 
Portfolio 4 1,3 4  5 2 4.211 $49,554,985 
Portfolio 5 1,2,5  3 4  4.227 $50,307,176 
Portfolio 6 1,3 4  2,5  4.256 $50,461,266 
Portfolio 7 1,4,5 2  3  4.262 $78,079,799 

 
We noted that almost all years the probability to remain under the budget was higher than 98% in all 
cases, except for Portfolio 6 which has a 96.8% of confidence level in year 2. Some interesting 
observations can be made from Table 9. We notice that project 1 was selected by 5 of the 7 Pareto 
optimal points to start in year 1, 6 of the 7 solutions selected Project 3 to start either on year 1 or year 3. 
Surprisingly, the solution with the smallest total slack has a very high probability (close to 1) in all years 
to remain under budget. We note how Portfolio 7 would probably be discarded by the analyst because 
although has the highest rank of all, the difference in total slack is very high, it is 20 millions over 
Portfolio 6 which has a rank very close to Portfolio 7. We can see the difference graphically in Figure 1. 
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Figure 1 Pareto Optimal Set 
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An interesting portfolio is shown in Table 10. This portfolio selection has a Rank 4.267 which is larger 
than the rank of any of the previous solutions, and a total slack of around 56 millions which is not too 
large. This option seems good at first look, since the values of each year are below the budget and the 
rank is very high. However, when the probabilities are analyzed, one immediately notices that the 
probability to remain under budget for year 1 is only 62%. If this portfolio is selected, there is a 38% 
chance of going over budget during the first year. 
 

Table 11 Dangerous portfolio selection that seems like a good choice 
 

 Year 1 Year 2 Year 3 Year 4 Year 5 Rank Slack 
Projects 2,3 1 4 5  4.267 $56,222,556 

Exp. Cost $57,679,470 $52,982,191 $59,730,453 $42,192,664 $42,192,664   
Budget $58,000,000 $60,000,000 $64,000,000 $64,000,000 $65,000,000   
P(Cost<=B) 0.62 1.00 1.00 1.00 1.00   
 
This situation can be graphically explained by looking at the normal distribution as presented in Figure 2. 
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Figure 2 Normal Distribution for the portfolio selected in Table 10
 

 
The center of the normal distribution is the expected cost of the portfolio, the value b is the year 1 budget 
and the value represents the ideal budget value at which the probability of being under budget is 90%. 
Clearly the selection of the confidence level 

90z
α is critical in finding portfolio options that are optimal. 

 
5. CONCLUSIONS 
 
Portfolio selection under uncertainty is a challenge for many organizations, which can be solved using 
optimization models with non linear constraints.  The model presented gives the decision makers the 
flexibility required to assign different ranks to the projects if they are funded in different years while 
accounts for the effect of inflation which increases the cost of the projects as the time passes.  
 
A portfolio selection that is below the budget for every year not necessarily is a good solution. It is 
possible to have a probability of running over budget larger than the acceptable risk. Using a model that 
accounts for the multi-year aspects of the problem and includes constraints to ensure that the risk of going 
overbudget is maintain under limits, the decision makers can choose one solution among the Pareto 
optimal solutions provided.  
 
Changing the confidence level will result in a different set of Pareto optimal solutions, as the confidence 
level is dropped down, solutions that have a higher risk of going overbudget will be included in the set. 
This confidence level is then a very important parameter in the solution of the problem. 
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